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Abstract: The subject of multiple valued logic is gaining more and more interest due to 
the gradual approaching of the physical limits of the binary logic (Hurst, 1984). Having 
in view the advantages of information representation the ternary logic is occupying a 
central position of reserach. In this paper it is presented a combination between the 
simple multiple disjunctive decomposition of ternary logic functions and 
implementations with ternary T-gates. A comparison of complexity of implementations is 
carried out based on their costs. 
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1. SIMPLE-MULTIPLE FUNCTIONAL 
DECOMPOSITION OF TERNARY LOGIC 

FUNCTIONS 
 

Let ( )nxxf K1  be a ternary logic function, 

defined on the set of ternary variables 

{ }nxxX K1=  

On this set it is defined a partition Y|Z where 

{ }
pii xxY K

1
=  and { }

np ii xxZ K
1+

=   

If the function f  can be decomposed as 

follows: 

( ) ( ) ( )[ ]ZYgYggxxf n ,, 1231 =K  (1) 

where:  φ== ZYXZY IU ,   

123 and, ggg are ternary logic 

functions, then it is said that the function 

( )nxxf K1  allows a simple multiple 

disjunctive functional decomposition of the 
second order. 
In order to avoid trivial decompositions it is 

imposed the condition card { } 1>Y . 

Such a decomposition is called simple, because 
the set of variables is split into two subsets Y 

and Z, and it is called multiple, because there 
exist at least two subsets g2 and g1 that depend 
on the subset of variables Y. 

The subset { }
pii xxY K

1
=  is called the bound 

set of variables, whereas the subset 

{ }
np ii xxZ K

1+
= is called the free set of 

variables. 
The principle of the second order simple 
multiple disjunctive functional decomposition is 
depicted  in a graphical form in  Fig 1. 
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Fig. 1. Graphical representation of the second 
order simple multiple disjunctive 
decomposition. 
 
The generalization is straightforward for an (m-
1) order simple-multiple disjunctive functional 



decomposition of the ternary logic function 

( )nxxf K1 : 

( ) ( ) ( ) ( )[ ]ZYgYgYggxxf
mmmn ,,, 111 2

KK
−−=

 
(2) 

where  φ== ZYXZY IU ,  

mggg K21, are ternary logic 

functions. 
The principle of the (m-1) order simple multiple 
functional decomposition of the logic function 

( )nxxf K1  is depicted in Fig 2. 
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Fig. 2. The (m-1) order simple multiple disjunctive 

functional decomposition 

 
The advantage of using functional 
decompositions for ternary function 
implementation is obvious, since it is derived a 
drastic reduction of the implemented functions: 
instead of realizing a single n variable ternary 
function, there are synthesized (m-1) ternary 
functions depending on p variables and one 
ternary function depending on n-p +m-1 
variables. 
The basic tool used for analysis of 
decomposition property of switching functions 
is the decomposition matrix (Ashunhurst, 1957), 
which can be easily extended to ternary 
functions. 
In particular, the order of multiplicity of 

columns is designated by q and if 3≤q then 

the function allows a simple disjunctive 
functional decomposition (or simple multiple of 
order 1): 

( ) ( )[ ]ZYggxxf n ,121 =K   (3) 

where φ== ZYXZY IU ,  

If q>3 then the analysis is continued for 
identifying a multiple functional decomposition. 

If 9q3 ≤< then the ternary function allows a 

second order simple multiple functional 
decomposition: 

( ) ( ) ( )[ ]ZYgYggxxf n ,, 1231 =K  (4) 

In general, if 
12 3q3 −− ≤< mm
then the ternary 

function allows an (m-1) order simple multiple 
functional decomposition: 

( ) ( ) ( ) ( )[ ]ZYgYgYggxxf
mmmn ,,, 111 2

KK
−−=

 
(5) 

The effective decomposition is done in a 
twofold procedure: 
a) calculation of the function 

( ) ( )
np iimmmm xxgggZggg KKK

1
,, 1111 +−− =

. 
b) calculation of the subfunctions 

( ) ( )YgYgm 11 K− . 

By considering the simplest case, that referring 
to the second order simple multiple functional 
decomposition, this procedure is implemented as 
follows: 
1) For the partition Y|Z it is constructed the 

matrix 2n-px2p – dimensional, called the 
decomposition matrix. 

2) It is determined the column multiplicity and 
it is assumed that it is 9; the reduced 
decomposition matrix will contain 9 
columns designed C0C1C2C3C4C5C6C7C8 

3) The columns are associated to the ternary 
variables g1 and g2 allowing the following 
set of assignments: {00, 01, 02, 10, 11, 12, 
20, 21, 22}. 

4) These 9 combinations are put in 
correspondence with columns C0C1…C8. 
Obviously, there can be defined 9! 
associations; it is considered one of these 
associations. 

5) It is reconstructed the reduced 
decomposition matrix as a ternary diagram 
of (n-p+2) variables (Fig 3) 
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Fig. 3. Reduced decomposition matrix 
 
6) It is synthesized directly in the minimal 

form the ternary function 

[ ]
np ii xxggg K

1123 +
 

7) It is constructed a new ternary diagram 
containing a single row and 2p columns by 
placing in the column Ci the union of two 
ternary values {r, t} that correspond to the 
adopted assignment in step 4. The ternary 
value r corresponds to the function 

( )
pxxg K12 , while  the ternary value t 

corresponds to the function ( )
pxxg K11 . 



8) The ternary functions ( )
pxxg K11  and 

( )
pxxg K12  are directly synthesized in 

the minimal form. 
 

2. T-GATE TERNARY FUNCTION 
IMPLEMENTATIONS BASED ON THE 

SIMPLE MULTIPLE FUNCTIONAL 
DECOMPOSITION 

 
According to (Lee and Chen, 1956) any  ternary 
logic function of n variables can be implemented 

by a tree structure of T-gates containing 
2

13 −n

 

T gates. Each ternary T gate has four inputs and 
one output (Fig 4): 
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Fig. 4. A basic ternary T gate 
 
The input S is called the control variable or 
selection variable, while the input-output 
relation is: 

)()()();,,( 012 sJrsJqsJpsrqpT ⋅⋅⋅= UU

 
     (6) 
where: p, q, r, s are ternary variables belonging  

to  {0, 1, 2} 





≠

=
=

ksif

ksif
sJ k

0

2
)(   (7) 

U is the Max operator,  

I  is the Min operator 

A k – multiple control ternary T-gate [Higuchi et 
al., 1985] is depicted in Fig 5: 
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Fig. 5. K multiple control ternary T gate 
where C1...Ck are k ternary control variables 

p0p1...p3
k
-1 are 3k residual ternary 

functions 

The output Z is equal to residual function pj, 

where ∑
=

−=
k

i

i

iCj
1

13    (8) 

j is a scalar defining the index of the input 
transmitted to the output of the gate. 
In case of k – multiple control T gates the 
canonical implementations of a ternary function 

( )nxxf K1  depend of the values of n and k, 

having 





=

k

n
l levels and a total of 

13

13

−

−
⋅








k

k
k

n

 

T gates. 
Obviously, for large values of n the number of T 
gates is becoming inconvenient for canonical 
implementations. 
Therefore, techniques for reducing the number 
of required T gates for implementations of 
ternary functions were proposed. The target of 
such techniques is focusing on the number of 
levels and of gates in a level, with a direct 
impact on the cost of the implementation. 
It is proposed a method based on the functional 
decomposition of ternary logic functions. In 
particular, the considered decomposition 
corresponds to the simple multiple disjunctive 
decomposition presented in paragraph 1. The set 

of ternary variables { }nxxX K1= is split into 

two subsets { }
pii xxY K

1
=  and 

{ }
np ii xxZ K

1+
= ,  φ== ZYXZY IU , . 

It is analyzed if ( )nxxf K1  is decomposable 

according to the given formula for an (m-1) 
order simple multiple disjunctive functional 
decomposition: 

( ) ( ) ( ) ( )[ ]ZYgYgYggZYf
mmm ,,,, 11 2

K
−−=

 
Then, instead of synthesizing a ternary function 
of n variables, it has to be synthesized (m-1) 
ternary functions of p variables and one of (n-

p+m-1) variables. 
An analysis of the costs of implementations 
follows, by considering both basic ternary T-
gates and multiple control ternary T-gates. 
It is assumed that the cost of a ternary T-gate is 
$(T). 
Then, for the canonical implementation of the 

function ( )nxxf K1  the costs are: 

)$(
13

13
TM

k

k

n

c ⋅
















−

−
=










 (9) 

in case of k -  multiple control ternary T gates, 
and 



)$(
2

13
TM

n

c ⋅






 −
=   (10) 

in case of basic ternary T gates. 
According to the presented functional 
decomposition, the cost of implementation is 
defined by two components: those (m-1) 

subfunctions ( ) ( )YgYg m 11 −K and the function  

( )Zggg mm ,, 11 −K . 

Hence, 

)11()$(
13

13

)$(
13

13
)1(

)1(

1

1

T

Tm

MMmM

k

k
k

pnm

k

k

p

pnmpDES

⋅
















−

−

+⋅



















−

−
−

=+⋅−=

⋅






 −−+










−−+

 

in case of k-multiple control ternary T gates, and 

)$(
2

13
)$(

2

13
)1(

)1(

1

1

TTm

MMmM

mpnp

pnmpDES

⋅






 −
+⋅







 −
−

=+⋅−=

−+−

−−+

     (12) 
in case of basic ternary T gates. 

It must be checked the inequality 
cDES MM < , 

which will guarantee the efficiency of the 
decomposed solution. 
 
3. EXAMPLES OF USING BASIC TERNARY 

T-GATES 
 

I. It is given the following ternary logic function 
depending on variables {x1x2x3}: 









=

26,21,19,15,13,11,7,5,0:0

24,22,20,16,14,9,8,3,1:1

25,23,18,17,12,10,6,4,2:2

)( 321 xxxf  

On the set X it is defined the  partition x1x2/x3, 
therefore Y={x1x2} and Z={x3}. 

The required condition 2≥p is verified. It is 

constructed the decomposition matrix (Fig, 6) 
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Fig. 6. Decomposition matrix 
 
The column multiplicity is 3, therefore a simple 
disjunctive functional decomposition is possible, 
according to the decomposition formula: 

( )[ ]32112321 ,)( xxxggxxxf =  (13) 

The distinct columns are: 

















































1

0

2

0

2

1

2

1

0

 

These columns are associated to ternary logic 
values {0,1,2} associated to function g1(x1x2): 

2

1

0

2

,1

0

2

1

,0

2

1

0

→
















→
















→
















 

The reduced partition matrix is used for 
synthesis of the function g2(g1x3): 
 

g1 

x3
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0
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Fig. 7. Reduced decomposition matrix 

 
Synthesis of g2 subfunction according to T 
canonical form (Thelliez, 1971): 

( )

( ) ( ) ( )[ ] )14(;;1,0,2,;0,2,1,;2,1,0 1333

312

gxTxTxTT

xgg =

 
It is constructed the table for g1(x1x2) synthesis: 
 

0
0

0
1

0
2

1
0

1
1

1
2

2
0

2
1

2
2

g (x1 1 x )2 0 1 2 1 2 0 2 0 12

x1

x2

 
 

Fig. 8. Truth table for synthesis of g1(x1x2) 

( )

[ ] )15();;1,0,2(),;0,2,1(),;2,1,0( 2111

211

xxTxTxTT

xxg =

 



Implementation of the decomposed structure for 

)( 321 xxxf  is presented in fig. 9. 
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Fig. 9. Implementation of the ternary function 
f(x1x2x3) 
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Fig. 10 Canonical implementation of the 
function f 

By synthesizing the ternary function in the T -
canonical form the following equation is 
derived: 

)16(]]];];;0,2,1[

],;2,1,0[],;1,0,2[[

],];;2,1,0[],;1,0,2[],;0,2,1[[

],];;1,0,2[],;0,2,1[],;2,1,0[[[[

)(

323

33

2333

2333

321

xxxT

xTxT

xxTxTxT

xxTxTxTT

xxxf =

Canonical implementation would require 13 
basic T gates (Fig. 10).  
 
Evaluation of costs of implementation: 
Canonical solution: 

)$(13)$(
2

133

TTM c =⋅
−

=  

Decomposed solution: 

)$(8)$(
2

13
2)$(2

))$(())$(1(

2

2

222312

TTTM

TMMTMMM DES

=⋅
−

⋅=

=+=+⋅= −+

Therefore, the partition x1x2/x3 is accepted, and 
the decomposition validated, as yielding a 
cheaper solution. 
It was ignored further optimization of the 
derived T-structures, allowing more economical 
implementations (Higuchi et al., 1985) 
 
II. It is given the following ternary logic 
function depending on variables {x1x2x3 x4}: 
 









=

24,23,22,21,18,16,11,9,8,7,4:0

26,20,19,14,13,12,6,3:1

25,17,15,10,5,2,1,0:2

)( 4321 xxxxh

 
On the set X it is defined the following partition 
x1x2x3/x4, thus Y={x1x2 x3} and Z={x4}. 
It is constructed the decomposition matrix (Fig. 
11) 
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Fig. 11. The decomposition matrix for h(x1x2x3x4) 



The column multiplicity is 9, therefore it is 
allowed a simple multiple disjunctive 
decomposition of the second order, according to 
the presented formula: 

( ) ( )[ ]43212321134321 ,,)( xxxxgxxxggxxxxh =

 
The distinct columns are associated to the 
ternary combinations of variables g1 and g2: 
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The reduced decomposition matrix is depicted in  
Fig. 12 
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Fig. 12. The reduced decomposition matrix 
 
Specification of the subfunction g3 

 









=

24,23,22,21,18,16,11,9,8,7,4:0

26,20,19,14,13,12,6,3:1

25,17,15,5,10,2,1,0:2

)( 3213 gggg

 

Synthesis of the subfunction g3(g1,g2,x4) with 
basic T gates is presented in Fig. 13 
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Fig. 13. Implementation of the subfunction g3 
with basic T gates 
 
The sysnthesis of the subfunctions g1 and g2 is 
carried out from the truth tables given in Fig. 14. 
 
The implementation of the subfunctions 
g1(x1x2x3) and g2(x1x2x3) is presented in figures 
15 and 16. 
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Fig. 14. Truth tables for synthesis of subfunctions g1 and g2 
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Fig. 15. Implementation of the subfunction g2  
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Fig. 16. Implementation of the subfunction g1 

By assembling the constructed subfunctions it is 
obtained eventually the entire structure for h(x1x2x3x4) 
(Fig. 17) 
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Fig. 17. Implementation of the function h(x1x2x3x4) 
 
Since MDES = 39 < MC =40 the decomposition is 
validated. 
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